角动量量子化

2022-03-03 19:32:46

角动量量子化

先从数理方法的基础开始

勒让德方程:\((1-x^2)y''-2xy'+l(l+1)y=0\)

\(x=0\)邻域上解l阶勒让德方程:

\(y(x)=\sum_{k=0}^{+\infty}a_kx^k\)

则有\(y'(x)=\sum_{k=0}^{+\infty}(k+1)a_{k+1}x^k\),以及\(y''(x)=\sum_{k=0}^{+\infty}(k+2)(k+1)a_{k+2}x^k\)

代入方程得到了:

\((1-x^2)\sum_{k=0}^{+\infty}(k+2)(k+1)a_{k+2}x^k-2x\sum_{k=0}^{+\infty}(k+1)a_{k+1}x^k+l(l+1)\sum_{k=0}^{+\infty}a_kx^k=0\)

关注\(x^k\)的系数应该为0:

\((k+1)(k+2)a_{k+2}-k(k-1)a_k-2ka_k+l(l+1)a_k=0\)

于是:\(a_{k+2}=\frac{k(k+1)-l(l+1)}{(k+1)(k+2)}a_k\)

在这里l是常数,由于物理上的限制,方程的级数解必须收敛,这就要求了在某处分子为0,于是限制了l必须整数!

勒让德方程:\((1-x^2)\Theta''-2x\Theta'+(\lambda-\frac{m^2}{1-x^2})\Theta=0\)

作变换\(\Theta(x)=(1-x^2)^{\frac{m}{2}}y(x)\)

\(\Theta'(x)=(1-x^2)^{\frac{m}{2}}y'-mx(1-x^2)^{\frac{m}{2}-1}y\)

\(\Theta''(x)=(1-x^2)^{\frac{m}{2}}y''-2mx(1-x^2)^{\frac{m}{2}-1}y'-m(1-x^2)^{\frac{m}{2}-1}y+m(m-2)x^2(1-x^2)^{\frac{m}{2}-2}y\)

代入方程得到了:

\((1-x^2)y''-2(m+1)xy'+[\lambda-m(m+1)]y=0\)

再次使用级数法代入方程:

\((1-x^2)\sum_{k=0}^{+\infty}(k+2)(k+1)a_{k+2}x^k-2(m+1)x\sum_{k=0}^{+\infty}(k+1)a_{k+1}x^k+[\lambda-m(m+1)]a_k=0\)

同样地也可以得到递推关系:\(a_{k+2}=\frac{k(k-1)+2k(m+1)+m(m+1)-\lambda}{(k+1)(k+2)}a_k\)

但是这里就非常头疼了,分母为0的条件转化为\(\lambda=k(k-1)+2k(m+1)+m(m+1)\)

似乎不太好确定\(\lambda\)的取值,所以先做一些尝试,因为k在这里是任意的自然数,所以代入k的值。

当尝试k=l-m时:\(\lambda=l(l+1)\),这说明了当\(m\leq l\)时满足物理上的约束。

这是不是意味着只有当\(\lambda=l(l+1)\)的时候满足物理上的约束呢?

这时候就更加清晰了,注意到:

\(k(k-1)+2k(m+1)+m(m+1)-\lambda=(k+(m+\frac{1}{2}))^2-\frac{1}{4}-\lambda=0\)

\(\lambda=(k+m+1)(k+m)\),确实如此。

氢原子模型

氢原子所处的库伦势能为\(V=-\frac{Ze^2}{4\pi\epsilon_0 r}\)

列出薛定谔方程:\(E\psi=V\psi-\frac{\hbar}{2m}\nabla^2\psi\)

在球坐标下\(\nabla^2=\frac{1}{r^2}\frac{\partial}{\partial r}(r^2\frac{\partial}{\partial r})+\frac{1}{r^2\sin\theta}\frac{\partial}{\partial{\theta}}(\sin\theta\frac{\partial}{\partial\theta})+\frac{1}{r^2\sin^2\theta}\frac{\partial^2}{\partial\phi^2}\)

代入之后得到了:

\(\frac{1}{r^2}\frac{\partial}{\partial r}(r^2\frac{\partial\psi}{\partial r})+\frac{1}{r^2\sin\theta}\frac{\partial}{\partial{\theta}}(\sin\theta\frac{\partial\psi}{\partial\theta})+\frac{1}{r^2\sin^2\theta}\frac{\partial^2\psi}{\partial\phi^2}+\frac{2m}{\hbar^2}(E+\frac{Ze^2}{4\pi\epsilon_0r})\psi=0\)

这里还是太复杂了,我们试图把\(\psi\)简化,写成这样的形式:\(\psi=R(r)\cdot Y(\theta,\phi)\)

\(\frac{Y}{r^2}\frac{\partial}{\partial r}(r^2\frac{\partial R}{\partial r})+\frac{R}{r^2\sin\theta}\frac{\partial}{\partial{\theta}}(\sin\theta\frac{\partial Y}{\partial\theta})+\frac{R}{r^2\sin^2\theta}\frac{\partial^2Y}{\partial\phi^2}+\frac{2m}{\hbar^2}(E+\frac{Ze^2}{4\pi\epsilon_0r})RY=0\)

\(\frac{1}{R}\frac{\partial}{\partial r}(r^2\frac{\partial R}{\partial r})+\frac{1}{Y\sin\theta}\frac{\partial}{\partial{\theta}}(\sin\theta\frac{\partial Y}{\partial\theta})+\frac{1}{Y\sin^2\theta}\frac{\partial^2Y}{\partial\phi^2}+\frac{2mr^2}{\hbar^2}(E+\frac{Ze^2}{4\pi\epsilon_0r})=0\)

移项后得到了:

\(\frac{1}{R}\frac{\partial}{\partial r}(r^2\frac{\partial R}{\partial r})+\frac{2mr^2}{\hbar^2}(E+\frac{Ze^2}{4\pi\epsilon_0r})=-\frac{1}{Y\sin\theta}\frac{\partial}{\partial{\theta}}(\sin\theta\frac{\partial Y}{\partial\theta})-\frac{1}{Y\sin^2\theta}\frac{\partial^2Y}{\partial\phi^2}\)

注意到LHS只和r有关,而RHS只与\(\theta,\phi\)有关,所以令\(\frac{1}{R}\frac{\partial}{\partial r}(r^2\frac{\partial R}{\partial r})+\frac{2mr^2}{\hbar^2}(E+\frac{Ze^2}{4\pi\epsilon_0r})=-\frac{1}{Y\sin\theta}\frac{\partial}{\partial{\theta}}(\sin\theta\frac{\partial Y}{\partial\theta})-\frac{1}{Y\sin^2\theta}\frac{\partial^2Y}{\partial\phi^2}=\lambda\)

把目光聚焦到第二个等号上,再把复杂的式子做一个分离,令\(Y(\theta,\phi)=\Theta(\theta)\cdot\Phi(\phi)\)

得到了:\(\frac{\sin\theta}{\Theta}\frac{d}{d\theta}(\sin\theta\frac{d\Theta}{d\theta})+\lambda\sin^2\theta=-\frac{d^2\Phi}{\Phi d\phi^2}=\nu\)

此时,第二个等号就很好解决了:\(\Phi(\phi)=Ae^{i\sqrt{\nu}\phi}+Be^{-i\sqrt{\nu}\phi}\)

作为波函数,\(\Phi(\phi)\)必须是单值函数,也就意味着\(\Phi(\phi+2N\pi)=\Phi(\phi)\)

所以\(\sqrt{\nu}=m\)必须是整数。\(\Phi(\phi)=Ae^{im\phi}+Be^{-im\phi}\)

重新代回得到\(\frac{1}{\sin\theta}\frac{d}{d\theta}(\sin\theta\frac{d\Theta}{d\theta})+(\lambda-\frac{m^2}{\sin^2\theta})\Theta=0\)

遇到这样的微分方程好像没什么办法,试图做变化:\(\theta=\arccos x\)

\(\frac{d\Theta}{d\theta}=\frac{d\Theta}{dx}\frac{dx}{d\theta}=-\sin\theta\frac{dx}{d\theta}\)

于是就转化为\((1-x^2)\frac{d^2\Theta}{dx^2}-2x\frac{d\Theta}{dx}+(\lambda-\frac{m^2}{1-x^2})\Theta=0\)

这就来到了一开始解决的勒让德连带函数问题。

所以我们有结论\(\lambda=l(l+1)\)

角动量量子化\(L=\sqrt{l(l+1)}\hbar\)

在直角坐标下角动量的各个分量很好表示:

\(L_x=yp_z-zp_y=-i\hbar(y\frac{\partial}{\partial z}-z\frac{\partial}{\partial y})\)

\(L_y=zp_x-xp_z=-i\hbar(z\frac{\partial}{\partial x}-x\frac{\partial}{\partial z})\)

\(L_z=xp_y-yp_x=-i\hbar(x\frac{\partial}{\partial y}-y\frac{\partial}{\partial x})\)

利用链式法则\(\frac{\partial}{\partial r}=\frac{\partial x}{\partial r}\frac{\partial}{\partial x}+\frac{\partial y}{\partial r}\frac{\partial}{\partial y}+\frac{\partial z}{\partial r}\frac{\partial}{\partial z}\)我们很容易写出逆变换

于是得到了:

\(\frac{\partial}{\partial x}=\sin\theta\cos\phi\frac{\partial}{\partial r}+\frac{\cos\theta\cos\phi}{r}\frac{\partial}{\partial\theta}-\frac{\sin\phi}{r\sin\theta}\frac{\partial}{\partial \phi}\)

\(\frac{\partial}{\partial y}=\sin\theta\sin\phi\frac{\partial}{\partial r}+\frac{\cos\theta\sin\phi}{r}\frac{\partial}{\partial\theta}+\frac{\cos\phi}{r\sin\theta}\frac{\partial}{\partial \phi}\)

\(\frac{\partial}{\partial z}=\cos\theta\frac{\partial}{\partial r}-\frac{\sin\theta}{r}\frac{\partial}{\partial\theta}\)

\(L_x=i\hbar(\cot\theta\cos\phi\frac{\partial}{\partial \phi}+\sin\phi\frac{\partial}{\partial \theta})\)

\(L_y=i\hbar(-\cot\theta\sin\phi\frac{\partial}{\partial \phi}+\cos\phi\frac{\partial}{\partial \theta})\)

\(L_z=i\hbar\frac{\partial}{\partial\phi}\)

所以我们得到了角动量的算符:

\(L^2=-\hbar^2[\frac{1}{\sin\theta}\frac{\partial}{\partial \theta}(\sin\theta\frac{\partial}{\partial\theta})+\frac{1}{\sin^2\theta}\frac{\partial^2}{\partial\phi^2}]\)

回顾下前面的方程

\(-[\frac{1}{Y\sin\theta}\frac{\partial}{\partial{\theta}}(\sin\theta\frac{\partial Y}{\partial\theta})+\frac{1}{Y\sin^2\theta}\frac{\partial^2Y}{\partial\phi^2}]=\lambda\)

\(-\hbar^2[\frac{1}{\sin\theta}\frac{\partial}{\partial{\theta}}(\sin\theta\frac{\partial Y}{\partial\theta})+\frac{1}{\sin^2\theta}\frac{\partial^2Y}{\partial\phi^2}]=\lambda\hbar^2 Y\)

所以得到了:\(L^2Y=\lambda\hbar^2Y\),所以角动量的本征值即为\(L^2=\lambda\hbar^2\)

\(L=\sqrt{l(l+1)}\hbar\)